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S U M M A R Y  
Based on a simplified model of the cochlea a one-dimensional approach (the Pe terso~Boger t  model) is compared 
with a three-dimensional one. The results appear to be in agreement provided the impedance of the partition is large. 
This is true for low frequencies except in the region of maximum membrane amplitude. For  low frequencies, moreover, 
the fluid can be considered as incompressible. The influence of the viscosity is investigated by localizing the entire 
viscous force in a boundary layer. This layer is shown to occur in the fluid, Besides it is concluded that the rotation 
is approximately largest where the membrane has its maximum amplitude. This can be an explanation for the appear- 
ance of eddies at that point. 

1. Introduction 

The cochlea is a part of the inner ear and consists of a spirally coiled tube, longitudinally 
divided into three parts: the scala vestibuli, the cochlear duct and the scala tympani. The 
smallest of these, the cochlear duct, is separated from the scala vestibuli by Reissner's membrane 
and from the scala tympani by the basilar membrane. It contains a highly viscous fluid, 
the endolymph. Von B6k6sy [1] has shown that the two membranes and the fluid move 
in unison, so that it is assumed generally that the cochlea can be represented by two channels 
divided by a single membrane, the cochlear partition, and bounded moreover by a rigid wall. 
Another simplification which seems to be permissible is that the spiral coiling can be dispensed 
with. At the basal end of the cochlea the scala vestibuli and the scala tympani are separated 
from the middle ear both by an opening covered with a membrane, the oval and round window 
respectively. Near the apex the partition terminates just before the end of the scalae; because 
of this the channels communicate through a small aperture called the helicotrema. 

Knowing finally that the cross-sectional areas of the scalae are roughly equal with the ex- 
ception of the immediate vicinity of the windows, we can represent the cochlea as indicated 
by Fig. 1. 

het i eo trema 

partiti0n 

Figure 1. 
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The cross-sectional area being largest at the basal end and decreasing slowly towards the 
helicotrema has an average of 0.02 cm 1. The width of the partition increases from 0.01 cm 
(windows) to 0.04 cm (hel.); the length of the cochlea is about 3.5 cm. The density of the peri- 
lymph is about 1 g/cm 3, its viscosity 0.02 g/cm. s. Of great importance for the dynamical 
behaviour of the cochlea are mass, resistance and stiffness of the partition. The order  of 
magnitude of these quantities is known to a sufficient extent but the references disagree as to 
the exact values. Taken per unit area the mass increases slightly from the basal to the apical 
end, the order of magnitude being 0.1 g/cm 2, the resistance and the stiffness decrease rapidly 
(order 10 3 g/cm 2. s and 10 6 dyn/cm 3 respectively). These figures are due to [2, 6, 7, 11], all 
of which refer to experiments of Von B6k6sy. 

Fluid motion in the cochlea is caused by the stapes, the last of the three middle-ear bones. 
In case of a sound vibration the stapes excitates the oval window to which it is attached. The 
main effect of this is a deflection of the partition as a result of the pressure difference in the two 
scalae. This deflection can be considered decisive as to sound perception which is effectuated 
by the organ of Corti localized in the cochlear partition and supported by the basilar membrane. 

To describe the dynamical phenomena in the cochlea a one-dimensional model is used almost 
without exception in which the viscosity of the perilymph is not taken into account. Only 
Peterson and Bogert [7] introduce viscosity in their equations but they do not draw any 
conclusions concerning its relevance. Klatt and Peterson [6] and especially Tonndorf  [9] 
point out the possible importance of viscous effects, the latter because they could explain the 
observed non-linearities. 

The purpose of this paper is two-fold : first the applicability of the one-dimensional (Peterson- 
Bogert) model will be checked on the basis of a simplified representation of the cochlea; next 
the influence of the viscosity will be examined. 

2. The three-dimensional model 

Since the geometry of the cochlea is too complicated to obtain results from a direct three- 
dimensional treatment a simplified representation is introduced namely a parallelepiped 
bisected by a membrane clamped at the edges, the cochlear partition (see fig. 2). 

b 
Figure 2. 

The rectangular coordinate system is chosen in such a way that x - -0  at the helicotrema 
(hel.), x = l at the windows (ow : oval window, rw : round window) and y = 0, y = b, z = - h and 
z = h at the walls. 

The scala vestibuli is the part of the figure with z > 0, the scala tympani that with z < 0, 
while the partition is located at z = 0. It is assumed that the motion of the partition is negligible 
as compared to the dimensions of the cochlea. The time variable is t. Denote by i6(x, y, z, t) 
and ~(x, y, z, t)=(~(x, y, z, t), ~(x, y, z, t), ~(x, y, z, t)) the pressure and velocity in the fluid 
and by p (x, y, z, t) its density. Then the continuity equation reads 

pt+V-(p~) = 0.  (2.1) 
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The equation of motion for an inviscid fluid is 

p ~ t + p ( f . V ) ~ + V ~  = O. (2.2) 

(subscripts indicate partial differentiation with respect to the variables involved). 
If the fluid is barotropic, that is, if the pressure/7 is a function of the density p only, (2.1) can 

be written in the form 

a ~ f f t + ~ l  1 ( f . V p ) + p V ' ~ = 0 ,  (2.3) 

in which a(p)= d~/dp is the velocity of sound in the perilymph. 
The substitution of p by its average Po, by which a(p) likewise becomes a constant, leaves 

one non-linear term in each of the equations (2.2) and (2.3). These terms can be disregarded 
under the hypothesis of small velocities, so that 

: - 

/~,+V- f = 0 ,  . (2.4) 
po a2 

Po ~Tt + V/7 = 0.  (2.5) 

We take only pure tones of frequency f =  co/2n into consideration and set 

~(x, y, z, t) -=- p(x, y, z)e i~t , (2.6) 

e(x, y, z, t) = v(x, y, z)e i~t . (2.7) 

Then, writing v = (u, v, w), we can simplify (2.4) and (2.5) as follows : 

i0) 
poa2 p+Ux+VyWw z = 0 ,  (2.8) 

i0)pou +Px = 0,  (2.9) 

i0)pov+Pr = 0,  (2.10) 

i0)poW+pz = 0 ,  (2.11) 

Equations (2.8)-(2.11) hold for both scala vestibuli (sv) and scala tympani (st). 
We are interested mostly in the deflection of the partition. Since it is assumed generally that 

this depends on the pressure difference between the two channels only, we define 

P(x, y, z) = psv(X, y, z)--pst(x, y, - z) . (2.12) 

It can be deduced easily from (2.8)-(2.11) that P satisfies the equation 

0) 2 
AP + V P = 0,  (2.13) 

where A is the Laplace-operator. 

To solve P from this equation, six boundary conditions are needed. Three of them can be 
obtained from the fact that the velocity component normal to the walls vanishes at the walls. 
Using (2.10), (2.11) and (2.12) we find 

Py(x, 0, z) = 0 ,  (2.14) 

Pr(x, b, z) = 0 ,  (2.15) 

Pz(x, y, h) = 0.  (2.16) 

Because of the direct contact between the fluids in the scalae at the helicotrema, there can be 
no pressure difference at this point; hence it follows that 

P(0, y, 0) = 0.  (2.17) 
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In addition we have the membrane equation 

~*w(x, y, O) = P(x, y, 0)-+ 2P(x, y, O) = (Pz(x, y, 0). (2.18) 

In this equation is employed the impedance 

i~* 1 
- - (e-rn~oZ+iko) (2.19) 

poC~ poC~ 2 

with c, m, k stiffness, mass and resistance of the membrane per unit area. Finally we suppose 
P(l, y, z) is known. 

The solution of (2.13) satisfying (2.14)-(2.18) can be obtained by separation of variables. It 
reads 

 220/ 
a=0  fl=0 

with ~, fl = 0, 1, 2, ... Further 

2~z,p = + z~ a2 (2.21) 

and the zp are roots of 

2 
tg (zh) = ~-, (2.22) 

arranged towards increasing fi according to increasing modulus ; the quantities 2,,p, ~ and 
are complex. The coefficients B~,a can be found from the window condition (i.e. P(l, y, z) is 
known). 

Define 6 by 

2h 
6 = - - .  (2.23) 

With the aid of this (2.22) becomes 

zh tg (zh) = 6 ,  (2.24) 

so that for small [6[ the following approximations are valid: 

z o h = 6 ~ , 8 (2.25) 

Ceh=fl~ + ~ ,  fl= 1,2, ... 

Here, second and higher powers of 8 have been neglected. 
Employing (2.25), (2.20) can be written as 

P ( x , y , z ) =  ~ I B ~ , o s i n h ( 2 ~ , o X ) C O S ~ - ) c o s ( ( h ~ ) 8 ~ ) +  
~ = 0  

+ ~ B~,p sinh(2~,px)cos ( 7 ) c o s  ( f i~ (~ -z} ) l  + 0(8) .  (2.26) 
f l= l  

For a comparison with the one-dimensional model it is sufficient to consider P,v, that is, the 
average of P(x, y, z) over a cross-section of the channel. Hence, Pay is given by 

pav(x) = P(x, y, z)dydz = 
y=O z=O 

sin 6 ~ 
= Bo, o sinh(2o,oX ) ~ + 0(8) .  (2.27) 
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Since P(l, y, z) is prescribed, Pay(1) is known. Obviously we can write for Pav, ignoring 0(6), 

sinh (2o,oX) (2.28) 
pay(X) = Pay(l) sinh (20,0 l) 

with 20. 0 given by 
0)2 

22,0 = z 2 a2 , (2.29) 

where ~ denotes the root of (2.22) with the smallest modulus. 
Though we are interested mostly in the pressure difference we have considered the pressure 

sum also for the sake of completeness. Writing 

Q(x, y, z) = psv(x, y, z)+pst(x, y, - z )  (2.30) 

we have to solve the equation 

0) 2 
AQ + ~ -  Q = 0 (2.31) 

subject to the boundary conditions 

Qr(x, 0, z) = 0,  (2.32) 

Q,(x, b, z) = O, (2.33) 

Qz(x, y, h) = 0,  (2.34) 

Qz(x, y, 0) = 0 ,  (2.35) 

~b ih Qx(O, y, z)dydz = 0 (2.36) 
2 y=0 ./ z=0 

and Q(l, y, z) prescribed. Equation (2.35) can be derived from (2.11) and its analogue for the 
scala tympani; (2.36) is due to the condition of zero axial flux at the helicotrema. 

For our purpose only the cross-sectional average qav of Q (x, y, z) is important: 

cosh (0)x/a) (2.37) 
qav(X) : qav(l) cosh(0)I/a) " 

Here, qav(l) is known. It can be obtained easily from the prescribed Q (l, y, z). 

3. The one-dimensional model 

The Peterson-Bogert equations for a cochlea of which the scalae are equal and have constant 
cross-sectional areas, are ([7]) : 

(Psv--Pst)xx -5 ~ (Psv--P~t) = 0,  (3.1) 

60 2 
(p v + p ,)xx + (psv + ps,) = o .  (3.2) 

In this conception P~v and P~t are homogeneous over the respective cross-sections. When 

p(x) = psv(X)-p~t(x), (3.3) 

q(x) = p~v(X)-+-Pst(X) , (3.4) 

the bour/dary conditions for (3.1) which are in agreement with the three-dimensional case, are 

p(0) = 0,  (3.5) 

p(1) = pay( l ) ,  (3.6) 
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while (3.2) is liable to 

qx (0) = O, (3.7) 

q(1) = qav(/). (3.8) 

The solutions for p and q are 

sinh (0x) (3.9) 
p(x) = pay(Z) sinh(0/) ' 

where 0 is given by 

2 co 2 
02 - (0, ~ complex) (3.10) 

~h a 2 ' 

cosh (cox/a) (3.11) 
q (x) = qav (l) cosh (col/a) " 

4. Discussion 

In view of the foregoing it is clear that the results for the pressure sum of the Peterson-Bogert  
model correspond with the three-dimensional results completely. When we look at the pressure 
difference, we see from eqs. (2.28), (2.29), (2.22) and (3.9), (3.10)that the one-dimensional model 
is an asymptotic approximation of the three-dimensional model  by letting I% hi ~ 0 ,  since 
(2.28) and (3.9) can be asymptotically equal only if I&,ol =101. For  this to hold, -c o tg(%h) 
needs to be replaced by -c 2 h. This can be done approximately if I% h[ ~ 1, or, in other words, 
if [~h-ll >>1. 

It can be expected that this criterion will be valid as well in the non-simplified model of the 
cochlea, because the geometry plays no part in it. 

F rom (2.19) it is found that 

[(c-mcoe)2+keco2]~ 1 ( k 2 - 2 m c  c2~ ~ 
I~h-l[ = poco2h = P~ h m 2 q- (_02 -t- 04  / . (4.1) 

The numerical values, used by Peterson and Bogert [2], [7] are 

c = 1.72 x 109 e 2(x- t ) dyn/cm 3 , k = 6.737 x 103 e x- t g/cm 2 . s ,  

m = 0.143 g/cm 2 , Po = 1 g/cm 3 , 

while h~0.1 cm and 102< co< 105 c.p.s. 
Regarding these values which are not very precise but  do give us enough qualitative in- 

formation, we can conclude that the Peterson-Bogert  equations are inappropriate to describe 
the cochlear phenomena for high frequencies. Also, for low frequencies, the computed values 
near the position of maximal membrane amplitude (where c~mco  2, see e.g. [11]) may differ 
from the real ones. 

Lastly it can be seen immediately from (2.21) and (2.29) that the compressibility is negligible 
as to the results of the pressure difference for low frequencies, namely f ~  a l~0]/2~z. 

5. The viscous case 

Since the equations for a viscous fluid cannot be dealt with as easily as in the non-viscous case 
the approach to this problem differs fundamentally from the former. Suppose the fluid can be 
considered as incompressible which is certainly justified for low frequencies. Then the continuity 
equation reads 

V" e = 0 (5.1) 

and the equation of motion reads 
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; ~ ,+p (~ -v )~+  v g - ~ d ~  = o ,  (5.2) 

where p is the coefficient of viscosity. 
When the non-linear quadratic velocity term is disregarded and only harmonic oscillations 

are considered, (5.2) becomes with the aid of (2.6)-(2.7) 

icopv+Vp-#Av = 0 .  (5.3) 

Decompose  p and v in an inviscid part  (Po, %) and a per turbat ion (Pl, h )  as a result of the 
viscosity. Then (5.1) and (5.3) can be written as 

V.(vo+Vl) = 0 ,  (5.4) 

ie)p(Vo+Vl)+V(po+Pl)-I~A(vo+Vl) = 0 ,  (5.5) 

where Po and Vo satisfy the equations for an inviscid fluid (see Section 2). Moreover,  because the 
inviscid flow is irrotational, we have 

V x  v o = 0 ,  (5.6) 

so that the relation 

Avo = V V ' v o - V x  (Vx %) (5.7) 

with the aid of (5.i) and (5.6) leads to 

AVo = 0 .  (5 .8 )  

Define e and q~ by 

e 2 - ~ , (5.9) 
pco 

Pl  
ql = - - .  (5.10) 

p~o 

In view of the foregoing, (5.4) and (5.5) simplify to 

V'v~ = O, (5.11) 

iv1 + Vql _~2 Av~ = O. (5.12) 

Inasmuch as (5.11) and (5.12) hold for both channels, it is sufficient to consider the scala 
vestibuli only. 

Suppose that  the inviscid flow is the main flow and the effects of viscosity are taken to be 
localized in a thin layer near the walls (y = 0, y = b, z = h) and the membrane  (z = 0). The fact 
that boundary  layers do play a role is evident from the following: knowing that  p ~ 1 g/cm 3 
and/~ ~ 0.02 g/cm. s one finds, when f =  30 Hz, that  e = 0.01 cm. This means that the thickness 
of the layer which will appear  to be O(e), comes to about  one tenth of the diameter of a scala 
( ~  1 mm). For  large f ( ~  104 Hz) the thickness is of  order 0.01 mm, still one percent of  the 
scala diameter. 

Because we are interested in the effects in the neighbourhood of the parti t ion only, we confine 
ourselves to the boundary  layer near z = 0. The flow in this layer is subject to the following 
hypotheses, already posed by Rayleigh [8]:  the derivatives in the x- and y-directions are 
negligible with respect to those in the z-direction, whilst v and w are small compared to u. 
The reason for this is as follows : for the inviscid flow the z-component  Wo is equal to the mem- 
brane velocity on the partition, while Vo ~ 0 since the flow is approximately axially directed, 
but u o r 0. Because of the no-slip condition we have therefore that vl = wl = 0 and u i -- - u o # 0 
on the partition, so that from the fact that v 1 ~ 0 outside the boundary  layer it can be deduced 
that ul decreases strongly within the layer while v~ and wt remain small. 

Write out (5.11) and (5.12) 

Ui,x+Vl,y+wi,~ = 0 ,  (5.13) 
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iul+ql,x--ee(ui,~+ul,,r+ui,~) = 0 ,  (5.14) 

iv 1 +qi,r--~2(vl,xx+Vi,rr+vl,,Z) = 0 ,  (5.15) 

iw I +ql,z,82(wi,x~+w~,ry+wi,~z) = 0. (5.16) 

Starting from O/Ox = O(1), 3/Oy = O (1) and u 1 = O (1), (5.14) gives O/Qz = O(e-~), if indeed the 
viscosity is a factor of some importance. Then (5.13) shows that W l = O (~) and hence q 1 = O (e2), 
since when q i = O (E) it would follow that q 1, z = O (1) which contradicts (5.16). With the above- 
mentioned estimates the most important component of (5.12), namely (5.14) can be simplified 
by neglecting O(~ 2) with respect to O (1): 

iu i -e2ul,~z = 0 (5.17) 

with the boundary conditions 

u(x, y, 0) = 0-~u,(x,  y, 0) = -u0(x,  y, 0), (5.18) 

lim ul(x, y, z) = 0.  (5.19) 
z--~ cx3 

The solution of (5.17) satisfying (5.18) and (5.19) is: 

[ ui(x'Y'Z)=-u~ e .2 :  J"  

Now the assumptions made appear to be consistent. One can see clearly from (5.20) that the 
thickness of the boundary layer is of order e. 

On account of a/Ox, a/Oy~ O/#z and vl, wl ~ us, the rotation is roughly equal to Ou,/az, 
since the inviscid flow is irrotational. Thus, the magnitude of the rotation is given approximately 
by 

1 
- l u o ( x ,  y,  0)1 e-Z/~ (5.21) 
e 

This is maximal with regard to z when z = 0 (i.e. on the partition) and with regard to x when 
l u o(x, y, 0) l, that is I Po,~ (x, y, 0) 1 is largest. The calculations of Peterson and Bogert [2], [7] 
and of Hubbard and Geisler [5] show that Op/#x is maximal near the helicotrema for low 
frequencies. For  high frequencies the maximum moves towards the windows. It is presumably 
located in the region where the membrane has its maximum amplitude. 

This picture is in complete accordance with the experiments of Von B6k6sy [1] concerning 
the localization of the observed eddies and with the statement of Tonndorf  [9] that boundary 
layers in consequence of viscous effects would play a part in this. The most important influence 
of viscosity therefore seems to consist in the creation of vortices near the position of maximum 
partition amplitude, but no quantitative conclusions regarding this can be drawn. 
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